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Mission

• Provide solid mathematical foundations for the use of
PDEs in applications of interest to the Of£ce of Science in
the Department of Energy (DOE).

– Algorithms

– Software

– PDE models

– Tools for their analysis
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Resources

• Principal Investigators

– Gary Leaf (1 FTE)

– Lois Curfman McInnes (.38 FTE)

– Mike Minkoff (.3 FTE)

– Barry Smith (.5 FTE)

• Postdoctoral Scholars

– Mathew Knepley (.3 FTE)

• Investigators

– Hong Zhang
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Resources

• Technical Staff

– Satish Balay (.5 FTE)

• Visiting Faculty

– Padma Raghavan (Penn State University)

– Jose Román (Polytechnic University of Valencia)

– Juan Restrepo (University of Arizona)

• Students

– Sanjukta Bhowmick (Penn State University)

– Paulo Goldfeld (Courant Institute, New York University)

– Dmitry Karpeyev (Old Dominion University)

– Ernesto Prudencio (University of Colorado at Boulder)

– Oliver Rheinbach (University of Essen, Germany)
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Leverage (Our other funded work)

• SciDAC TOPS

• chem

• CCA ...
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Interaction with Other Division Work

• Applied Mathematics

– Computation of derivatives (automatic differentiation)

– optimization

– computational ¤uid dynamics

• MPI
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In¤uence

• Biology

– something

• Nano

– something

• Algorithm research

– something
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Approach

• Identify the needs of important DOE applications,

• determine/develop the mathematics needed,

• design algorithms for high-performance computers based
on the best (or most practical) mathematics,

• provide high-quality implementations of those algorithms
usable by others.

For each of our projects (introduced below) we will step
through these aspects of our work.
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Technical Areas

Chapter 1: Algorithms and Software

– Implicit Solvers for Nonlinear PDEs

– Mathematical Aspects of Multigrid Methods

– Adaptive Polyalgorithmic Solvers

– Eigenvalue Computations for Computational Chemistry

– SPAM – DFTB – SLEPc

– Automatic Generation of Discretizations and Error

Estimators

Chapter 2: Modeling and Applications

– Dynamics of Micromagnetics

– Evolution of Structure in Interacting Particles

– Dynamic Systems and Computational Biology
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Implicit Solvers for Nonlinear PDEs

• Taking advantage of the roots of the problem

– multiple similar solves that arise sequentially

– linear solve embedded in nonlinear problem

– future work: in the context of moving meshes (below)
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From Newton-Multigrid to Multigrid-Newton

F (u) = 0

Simple Newton’s method may be written as

u← u− J−1(u)F (u).

Let ū denote u with all components frozen at the beginning of
the Newton step. Now Newton-SOR

ui ← ui − J
−1
ii (ū)[Fi(ū)−

j<i
∑

j=0

Jij(ū)(ūj − uj)].

SOR-Newton

ui ← ui − J
−1
ii (u)Fi(u).

SOR-Newton with “frozen” Jacobian values as

ui ← ui − J
−1
ii (ū)Fi(u).

By using a Taylor series expansion for
Fi(u) ≈ Fi(ū) +

∑

j Aij(ū)(uj − ūj) and noting that uj = ūj for
j ≥ i one obtains, remarkably, for the frozen SOR-Newton,
exactly the Newton-SOR given above. Thus we see that
Newton-SOR and SOR-Newton represent a spectrum of
nonlinear algebraic solvers that depend only on how recent
the information in the Jacobian has been updated based on
updated u values. This result trivially extends to
“block-smoothers” where the i subscript denotes not just a
single vector/matrix component but a set of them. For
example, with a “point-block” smoother, ui denotes all values
at a single point in the grid (for multi-component PDEs). For
operator-splitting based solvers, ui may indicate all £eld
variables of a particular type (e.g., pressure). For ADI-like
schemes they represent points on a line or plane.
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Dynamics of Complex Systems

• Nanoscale properties of materials

– Microstructure effects

– Magnetic switching

– Particle self-assembly

• Computational cell biology

– Oscillations in metabolic networks

– Cell population dynamics
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Supporting Software and Algorithms

• Computational Material Science

– Long-range £eld calculation

– Conservative ODE/PDE discretizations

• Computational Cell Biology

– Metabolic reconstruction

– Parallel simulation of population dynamics

Numerics ofPartial Differential Equations – p.13/41



Material Microstructure Effects

• Implications to device performance, manufacturing

• Domain wall pinning in disordered magnetic composits

– Elastic membrane in random pinning potential

– Driven by subcritical applied force F < Fc

– Critical slowing-down rate, £nal state roughness

– Pinning preventing ergodic methods

• Large-scale numerical simulation and statistical sampling
of potential

– Three regimes in £nal approach

– Determined critical exponent, symmetry F < Fc < F

• Collaboration with MSD Theory Group
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Material Microstructure Effects (cont’d)

• Vortex dynamics in type-II superconductors with random
defects

– SC states are minima of Ginzburg-Landau energy
– Attained by GL gradient ¤ow preserving

guage-invariance (Time-dependent GL)
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– Very long equilibration times due to phase transition

• Parallel integration of TDGL via domain decomposition

– Family of scalable guage-invariant discretizations

– Capture vortex creation and motion mechanism

– No assumptions on vortex number, nature of
interaction

• Collaboration with MSD Superconductivity group
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Magnetic Switching

• Coherent switching by coercive £eld Ha in granular
disordered composits

– Composition-controlled hysteretic properties

– Improved Energy ef£ciency of magnet-based devices

– Thermally assisted at critical Ha >> 0, timescale
∼ nsec

– Hysteresis studies: consequtive equilibration runs at
varied Ha

• Magnetic state decay

– Thermally activated, Ha
∼= 0

– Incoherent, effected by normal spin modes

– Timescale ∼ 1sec

– Time series analysis of very long undamped evolution

• Collaboration with MSD Magnetic Films group
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Magnetic Spin Dynamics

• Landau-Lifshitz-Gilbert equation of motion
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∂t
= M×

δH

δM
+ γM×

(

M×
δH

δM

)

,

H =

∫

D

d§
(
A|∇M|2 +K|e×M|2 + Ha ·M

)
+

∫

D

d§

∫

D

d§′
(
∇M(§) · ∇M(§′)

|§ − §′|

)

︸ ︷︷ ︸

Hff

• Spin length preservation |M| = const.

• Global dipolar energy component Hff
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Analysis and Numerics of LLG

• Issues

– Stability and spin-length conservation

– Invariants preservation (energy, undamped case)

– Dipolar £eld solver performance

• Spin-length preserving integrator

– Precession + damping decomposition

– Improved stability

• Fast far £eld solver

– Scalar potential+BI+multipole kernel expansion

– Improved run-time, storage performance

• Local Lagrangian form of undamped local part
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Switching Studies

• 1D spring-magnetic hysteresis

• Normal switching modes of iron nanodots
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Notes for authors

Suggest having more info on slides that is printed only to
notes version.
This could contain who is working on the material on that
slide, and if it is background, past work or future work.
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Ingedients for a PDE Simulation

• Governing weak form

– Using Symbolic Expression components

• Domain geometry

– Mesh component

• Discretization

– Also Symbolic Expressions

• Boundary conditions

– Also Symbolic Expressions
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Component Veri£cation

• Necessary for Application “buy-in”

– All results must come with con£dence bounds

• PDE need a posteriori error estimates

– Generic framework is well-known
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Code Generation for PDE

• Integration routines

– Generated using geometry and basis function
expressions

– Leverage AD for Jacobians and Hessians

• Operator Assembly

– Bookeeping needs mesh, unknown distribution on
each element, and boundary conditions

• Boundary condition application

– Code can be generated from the condition expressions

– This also permits use of AD for sensitivites
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Error Estimation Framework

• Solve the dual problem for a generalized Green function

– Dual can be represented symbolically, exactly as the
primal problem

– This is also necessary for linear sensitivies

• Adaptivity

– Control the error through mesh adaptation

– Control constraint satisfaction or other error functionals
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Proof of Concept

• Prototype Poisson and Bratu examples

– All equations represented symbolically as ASTs

– AST manipulation through the Visitor pattern
– differentiation
– variation
– integration
– interpretation or code generation

– Dual-based error estimation

– Mesh adaptation
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Poisson Example I

−∆u = f in Ω

u = 0 on ∂Ω
(1)

u The solution

uh The discrete solution from the space S

e The error u− uh

z The dual solution, or generalized Green function

zh The discrete dual solution

〈∇zh,∇χ〉 = 〈e, χ〉 in Ω

〈∇zh,∇χ〉 = 0 on ∂Ω
(2)
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Poisson Example II

• The error is orthogonal to all elements χ of the test space

〈∇e,∇χ〉 = 〈∇(u− uh),∇χ〉

= 〈f, χ〉 − 〈∇uh,∇χ〉

= 0

(3)

• The error norm can then be written as

‖e‖2 = 〈e, e〉

= 〈e,−∆z〉

= 〈∇e,∇z〉

= 〈∇e,∇(z − χ)〉 .

(4)
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Poisson Example III

• We may integrate element-wise, integrating by parts to
obtain

‖e‖2 =
∑

τ∈Th

{

〈f +∆uh, z − χ〉τ −
1

2
〈[n · ∇uh], z − χ〉∂τ

}

,(5)

• The error has thus been split into two parts:

– The equation residual

– The ¤ux residual

• Each term is multiplied by the weighting function z − χ

– The dual solution gives a measure of the “in¤uence” of
a given residual

Numerics ofPartial Differential Equations – p.28/41



Poisson Example IV

• Two obvious choices for the weighting function

– zh+ − PSzh+ , where S+ is a richer space than S, and
PS the projector onto S
– It is suf£cient for S′ to be one polynomial order

greater for Pk

– i+h zh − zh, where i+h zh is an interpolant to H+

– This approach lacks mathematical foundation, but is
much less expensive

– Rannacher, et.al. report good experience on a
number of practical problems

• For general linear functionals, we use the Reisz
representation J(e) = 〈e, ψ〉
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Missing Pieces

• Generation of language-speci£c expression graphs, and
£nally code

• Enhanced discretization support

– Advanced discretizations (spectral, discontinuous
Galerkin)

– Mixed discetizations

– Multiple £elds

• Enhanced error estimation

– Time-dependent problems

– Hyperbolic problems
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Biological Applications

• Mesh can represent a Metabolic Network

– Automatic construction of ODE representation

– Use AD seamlessly

• Incorporation of multi-parameter continuation
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Optimization Applications

• Expressions for Variational Inequalities

– Should only require min operation

• Support for PDE-constrained Optimzation

– Leverage Veltisto

Numerics ofPartial Differential Equations – p.32/41



Geodynamics Applications

• 3D subduction

– Allows investigation of large-scale patterns in
volcanism

• Introduction of £nite elements

– Allows error estimation and adaptation in troublesome
corner region

• Multigrid and mesh re£nement for strongly variable
viscosity

• Coupling with melting and reactive porous ¤ow

– Likely to start with loose model coupling
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Prior Work on Interacting Particles

• Participated in NSF Grand Challenge Simulation of
Solid-Liquid Flow

– Worked closely with Dan Joseph at University of
Minnesota

– http://www.e¤uids.com/e¤uids/books/joseph.html

• PETSc was used to simulate thousands of particles in
¤uid

• DNS on a moving, unstructured grid

• Scalable, multilevel preconditioning

• 85% parallel ef£ciency on 128 processors
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Techiques for Particulate Flow

• Fictitious Domain Method

– Could use an unstructured background mesh
– Useful for strongly varying accuracy requirements
– Can be adapted based upon error estimates

• Error Estimation

– Constraint violation by FDM can be monitored
– Use the constraint as the error functional J
– Can control this error using adaptation of both

meshes
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Potential Reformulations

• Elastic bodies

– Make use of distributed Lagrange multipliers

– More general stress tensors are easily incorporated

• Implicit particle positions

– Elegant resolution of the contact problem

– Much more ef£cient than a moving mesh
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SPAM

• Subspace Projection Approximation Method

• Extension of Davidson’s Method to multilevel subspace
approximations

• Designed for problems with expensive matrix vector costs

– Hamiltonian matrices in Con£guration Interaction (CI),
self-consistent £eld, molecular vibration analysis,
cumulative reaction probability, and other areas of
electronic structure calculations

• Uses a sequence of approximating matrices and
generates expansion vectors at each approximating level
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SPAM Cont’d

• Total number of matrix-vector calculations may
increase, but numbe r of true matrix-vector evaluations
will decrease

• Over 100 downloads from our FTP site
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CRP (Application)

• Calculation of time-independent Cumulative Reaction
Probability (CRP) to obtain exact reaction rates for large
degree of freedom (DOF) problems

• Transition state theory (TST) rate constants effectively
approximate CRP
– Rarely calculated for more than 3 DOF, we seek to

calculate 10 DOF
– We can calibrate TST results by developing

large-scale methods for CRP simulation and thus
test widely used TST reaction rates coef£cients
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CRP Approach

• Uses Lanczos method with each iteration requiring two
inverse Green’s functions evalutions
– Inner iterations lead to solving a linear system for

each Green’s function
– Solved via GMRES in PETSc

• Preconditioners
– A sequential code has demonstrated that for some

DOF, a truncated approximation of the banded
matrix can obtain ef£cient GMRES convergence

– In parallel, with diagonal preconditioning, problems
of up to 7 DOF have been treated on 128 processors
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CRP Preconditioning

• Discrete variable representation (DVR) leads to a
sparse matrix

• Compared to £nite-difference matrices these matrices
are
– Smaller, but less sparse
– More ill-conditioned
– Higher values of Solver Iterations/Matrix dimension

• Collaboration with W. Poirier (DOE Early Career Award,
Texas Tech University) on development of parallel
optimal separable bases based upon block jacobi
Factorization
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